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The chirality fittingness of orbits (homospheric, enantiospheric, and hemispheric) provides a 
new scheme of determining topicities (homotopic, enantiotopic, diastereotopic, and hetere 
topic). Thereby, transpositions of ligands on a skeleton are classified into four categories: 
homotopic, enantiotopic, diastereotopic, and heterotopic transpositions. The homotopic trans- 
positions are concluded to be non-stereogenic. On the other hand, the other transpositions are 
proved to be stereogenic. 

1 Introduction 

Since the terminology in stereochemistry has been to a great extent empirically developed, it has not 
escaped some ambiguity. Thus, there have appeared many reviews for clarifying or getting rid of such 
ambiguity.[ll--[‘l The term stereogenic was originally proposed by McCasland@l in order to avoid confusions 
provided by so-called “asymmetric” and “pseudoasymmetric” carbon atoms. The term stereogenic has 
been utilized as a key concept in the revised CIP-system for describing chirality and related matters.[g 
Later, Mislow and Siegeli “1 have extended the definition of a stereogenic atom so as to manipulate a 
stereogenic element (unit); this is defined as an element (uint) bearing several groups of such nature 
that an interchange of two groups produces a stereoisomer. They also discussed the conceptual distinction 
between the stereogenicity and chirotopicity. The term stereogenic has been adopted by several authorsI” 
in place of the terms “asymmetric” and “chiral”. 

Recently, we discussed a molecular model as a combination of sets of equivalent atoms, faces or 
segments. Thus, each of the sets is called an orbit, which was clarified to be subject to acoset representation 
(CR).[1a-1171 Thi s correspondence between the orbit and the CR afforded a foundation to the SCR 
notation (the notation based on subduced coset representations) for designating symmetrical properties 

of a moleculeI*8l as well as to chirality fittingness for specifying prochirality and local chirality.[“l In a 
continuation of this work, we here discuss the stereogenicity in terms of the chirality fittingness of an orbit. 

2 Topicity Based On Chirality Fittingness of an Orbit 

Terms concerning topicily were proposed by Mislow and Raban I201 and have been widely adopted in 
chemical and biochemical fields. These terms were classified by means of a flow chart based on pairwise 
relations.[211 We recently discussed a membership criterion for redefining the topicity.Ilg In order to discuss 
the stereogenicity, we shall formulate the topicity in a stricter fashion. 

Chirality fittingness of an orbit. In the previous papers,I18s lgl we consider a molecule of G 
symmetry to have an G(/G,) orbit that consists of a set of atoms, faces, or segments. The G(/G,) orbit 
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is governed by the CR G(/Gi) that is derived from a coset decomposition of G by G,. We have discussed 
three cases for such G(/G,) orbits: homospheric, enantiospheric and hemispheric. These three attributes 

of the orbits are called chirdity fittingness. I191 Thus, when both G and Gi are achiral point groups, the 
G(/G,) orbit is defined as homospheric. If G is an achiral point group but G, is a chiral point group, 
the G(/G,) orbit is defined as enantiospheric. When both G and G; are chiral point groups, the G(/G,) 
orbit is defined as hemispheric. 

chirality fittingness 
(sphericity) 

homospheric 
enantiospheric 
hemispheric 

In the present paper, we regard a molecule as a three-dimensional object that consists of a skeleton 
and ligands,a2] h w ere the substitution positions of the skeleton are replaced by the ligands. A set of 
equivalent positions in the skeleton is regarded as an orbit governed by a CR (G(/G,)), where ligands on 
the orbit are subject to a whole symmetry (G) and a local symmetry (G,) through the CR. It is dependent 
upon a problem at issue what part of the molecule is selected as a skeleton and what parts are regarded 
as ligands. 

Let us work out 1,2difluorododecahedrane (I).[~~] The skeleton of this molecule is a dodecahedrane 
that has 20 substitution positions to be considered. The ligands are determined to be two fluorine atoms 
and 18 hydrogen atoms. This molecule belongs to CzV symmetry, where the dodecahedrane skeleton 
and the ligands are now restricted to the CaV s mmetry. 

@!I 
r2*l By the action of the CzV point group, these 

positions are divided into 7 orbits (a, to A,). For instance, the a, orbit ({1,2}) is subject to the CR 

(C,,(/C,)) and therefore determined to be homospheric. [26l The A, orbit consists of {3,11,9,20} and is 
governed by CR (C&(/C,)); hence, this orbit is enantiospheric. Table 1 summarizes such orbits appearing 
in 1 as well as their governing CRs and chirality fittingness. 

4 10 

5 14 

’ c2v 2 kh 

Table 1: Orbits and coset representat.ions in 1 

Orbit Positions Members coset. Chirality fittingness 
(Ligands) representation (Sphericity) 

& {1,2) C?“(/CJ homospheric 

A2 (3,ll; 9,20} z: C%(/C,) enantiospheric 

A3 (4,101 ~~J{U.; homospheric 

A, {7,12; 8,19} :: ?I* 
C,,&) 

enantiospheric 

A5 (5,141 Hz homospheric 
A, {6,13; 15,18} H, C,V(/C,) enantiospheric 

A7 {l&17} Hz C,V(/C, 1 homosphcric 

If we consider proper rotations only among the symmct.ry operations of an achiral point group G. we 
have a chiral point group e, where 1 G 1 = 2 1 6; I. A ccortling to this restriction, r171 a homospheric orbit. 



Sttnogcnicity based on orbits 
5945 

(G(/G,)) is converted into a hemispheric orbit &(/ki), w h ere the length of the former orbit is equal to 
that of the latter. This fact indicates that the homospheric orbit is superposed to itself by proper rotations 
as well as by improper rotations. On the other hand, the restriction divides an enantiospheric orbit into 
two hemisheric orbits 6(/G,), each length of which is one hdf of that of the original orbit. This fact 

means that the enantiospheric orbit can be divided into two halves, 12*1 which cannot be superposed to 
each other by proper rotations only, but can be interchanged with each other by improper rotations. For 
instance, the A2 orbit of 1 can be divided into two halves, i.e. (3,ll) and {9,20}, if we only take proper 
rotations into consideration. Such subdivisions are represented by a semicolon in each couple of braces, as 
shown in Table 1. 

Definition of topicity. These discussions indicate that each position is characterized as a member 
of a home, enanti-, or hem&spheric orbit. For some purposes, we further examine the membership of each 
position in either (left-handed or right-handed) half of an enantiospheric orbit. As a result, the present 
approach conceptually needs not introduce such terms as concerning “topicity”, which refer to a relation 
between two positions. In other words, we can discuss such relations by characterizing the two positions 
as members of the same orbit or of different orbits. We can, for example, recognize the relationship among 
positions (3, 11, 9, and 20) without the topicity terms; thus, by indicating that they have the same 
membership in an enantiospheric orbit (AZ). H owever, the terms concerning topicity have long been used 
in organic chemistry and are so familar to organic chemists that we cannot now discontinue their usage. 
Hence, it is impartial as well as convenient to use the terms after the redefinition from the present point 
of view. 

The term homotoptc is defined as being the same membership of two positions (atoms, faces, or 
ligands) (1) in a homospheric orbit, (2) . m either half of an enantiospheric orbit, or (3) in a hemispheric 

orbit.1291 For instance, the 5- and 14-positions of 1 are related to each other in a homotopic fashion by 
the first criterion, since they belong to the homospheric orbit (A,) governed by C,,(/C,). The .3- and 
11-positions of 1 are homotopic by the second criterion, since they construct one half of the A, orbit that 
is enantiospheric because of the corresponding CR (CzV(/CI)). 

The existence of three types of homotopicities comes from the actions of i; and 6 described above. 
If we restrict the symrnetry of a G molecule to the 6 symmetry, each orbit of the first type creates a single 
hemispheric orbit. For example, the C&(/C,) orbit (A 5 is restricted to a hemispheric orbit (Cz(/C,)) ) 
under a C2 environment. Each half of an orbit of the second type also creates a single hemispheric orbit 
under the action of 6;. Remember that, under the restriction t.o Cz symmetry, each half of the C,,,(/C,) 
orbit (A,) is converted into a hemispheric orbit governed by C,(/C,), i.e. {3!1_l} or {9,20}. The third 
type of homotopicity is an obvious case. This common nature with respect to G affords a basis to give 
such a common name as homotopic to these cases. It should be noted that the case (1) is different from 
the other two cases in the sense that two positions of the former relation (1) are superimposable by a 
proper rot.ation as well as an improper rotation; on t.he other hand two positions ;f;he Int.ter relation ((2) 

or (3)) are superimposable by a proper rotation but not any improper rotations. 
When one position is a member of one half of an enantiosphcric orbit and the other position is 

a member of the other half, the relationship between the two positions is defined as enantiotopic. For 
instance, the relationships between the 3- and 9-positions of 1 as well as between the 3- and 20-positions 
are enantiotopic respectively. 1311 W e can also use this term to designate such two halves of an enantiospheric 
orbit. Thereby, a set of {3,11} is enantiotopic to another set of {9,20} in the AZ orbit of the molecule (1). 

The term diastercotopic is used to charact.erizc a relation between two positions, where the one belongs 
to an appropriate orbit subject to a CR and the other posit.ion is a member of another orbit subject to 
the same CR. For example, the relationship between the 3- and &positions of 1 is diast.ereotopic, since 
the 3-position belongs t.o a C&(/C,) orbit (As) and the 6-posit.ion is a member of another Cz,.(/C,) orbit 
(As). By extension, the A, orbit is diastereotopic to the As orbit, because both of the orbits are governed 
by the same CR (C&(/C,)). 

In some cases, two orbits of a molecule in a diastereotopic relation can be meaningly relatecl t.o 
each other, if the symmetry of the molecule is hypothetically converted into a higher one. In connection 
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with 1, for instance, consider 1,2,16,17-tetrafluorododecahedrane (2) of Dg,, symmetry, in which 8 marked 
positions construct an orbit subject to CR DZ,,(/CI). S ince this orbit is enantiospheric, the 8 positions 
are divided into two halves (o and l ), which are enantiotopic to each other. A hypothetical defluorination 
of 2 into 1 results in separation into two enantiospheric orbits (A, and As in 1). This example gives a 
sound foundation to the differentiation of a diastreotopic relation from a heterotopic relation described 
below.[3~ 

The term heterotopic is used to refer to the case that respective orbits involving two positions to be 
examined are different in their orbits and in their CRs. For example, the relationship between the 9- and 
14-positions of 1 is heterotopic, since the former belongs to the C&C,) orbit (As) and the latter to the 

COG) orbit (As). 

two 
posit ions 

(pseudo)intraclass 
relation 

I I 

interclass 
relation 

Figure 1: Flow chart for redefining topicity. 

The questions for the respective decisions are as follows: (1) Do the IWO posilions (or ligands) 

belong to the same orbit? (2) Do the two positions satisfy one of the three criteria for homotopicity? 
(The above figure depicts only the case of an enantiospheric orbit.) (3) Do the two positions belong 

to orbits governed by the same CR? 

htraclass and interclass relations. Figure 1 depicts the present scheme for redefining the 
topicity in the form of a flow chart. The decisions at the points 1 and 2 are strictly based on a membership 
criterion:Ilq whether two positions have the same membership or not. However, the decision at the 
point 3 is slightly different. This difference of decisions can be explained by intoducing the concepts, 
(pseudo-)intraclass and interclass relations. We use the inttaclaaa relation to refer to a relation that is 
concerned with two objects involved in the same equivalence class (orbit). The inter&as relation is defined 
as a relation between two distinct equivalence classes. The pseudo-intraclaaa relation is r&red to the case 
t.hat is an intractass relation from one point of view and can be regarded as an interclass relation from 
another point of view. Thereby, a homotopic relation is an intraclass relation, an enantiotopic one is a 
pseudc+intractass relation, and the other relat.ions are interclass relations. I331 An enantiotopic relation is 

concerned with two objects of an enantiospheric orbit, but at the same time indicates that the two objects 
are involved in the respect,ive halves of the orbit. 

This classification emphasizes our standpoint that places stress on equivalence classes (orbits) gov- 
erned by coset representations. It should be noted that an intractass and a pseudeintractass relation are 
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self-contained. In other words, they can be regarded as equivalence reiations from a mathematics point of 
view. On the other hand, an interclass relation denotes a relation without relationship. This means that 
such interclass relations cannot be regarded as equivalence relations. Previous confusions in stereochem- 
istry to a large extent stem from convensions that these two (or three) types of relations have not been 
differentiated. Equivalence relations and the resulting equivalence classes are primary; hence the concept 
of chirality fittingness {sphericity) should be primarily taken into consideration. We should subsidiarily 
use the topicity terms, as defined by the sphericity terms. 

3 St ereogenicity 

We define a stereogenic transposition on a skeleton as an operation that interchanges two ligands so as 
to produce stereoisomersj341 If such a transposition produces no stereoisomers, this operation is defined 
as non-stereogenic. A skeleton is referred to as being stereogenic if it involves at least one stereogenic 
transposition.[351 In other words, a stereogenic skeleton can underego non-stereogenic transpositions along 
with stereogenic ones. The present discussion focuses on (non-)stereogenic transformations, but not on 
stereogenic skeletons. For simplicity of discussion, we take no account of transpositions within a ligand. In 
addition, we tentatively suppose that a skeleton is rigid (or invariant) with respect to bond rotations.[36] 
In this section, we introduce several new concepts to ciarify the stereogenicity. 

Substitution equivalent. Consider 1,2-difluoro-3-hydroxydodecahedrane (3) as an example (Fig- 
ure 2). We interchange the hydroxyl group at the 3-position and the hydrogen atom at the 6-postition. 
This ~,rans~sition produces an isomer (4); hence, this is a stereogenic transposition. 

In order to make clear the nature of this transform&on, we introduce another formulation. Thus, 
t.he molecule (3) is regarded as a derivative produced by a substitution of a hydroxyl group at the 3- 
position of compound 1, while 4 is derived by the OH-subsitulion of 1 at the G-position. This means 
that lhe transposition concerning 3 and 4 is equivalent t.o a set of the distinct subst.itution processes of 
the common intermediate (1); which we calf a a comnt~n skeleton. We call the latter set of processes a 
substitdon equivalent of the former transposition. 

The symmetry of such common skeletons should be the same as or higher than those of original 
molecules. Among possible skeletons. wc select a common skeleton of the highest symmetry. fn this 
example, we replace the 3-OH of 3 (or the 6-OH of 4) by a hydrogen atom. Then we regard the resulting 

1.2-diffuorododecahedrane (1) having IS posit.ions as a common skeleton of C?,, symmctry.i3’l 
An alternative sclect.ion is possible to yield a skelet.on of lower symmetry. If we thus replace the 

Ghydrogcn of 3 by a Itydroxyl group, we have another skelrt.on of C, symmet.ry. This operation has the 
same effect as supposing that we disting~iish the 3- and 6-positions from the other 16 positions of the 
common skelcton( 1). We do not adopt. this selection. 

Taking account of such a ertbst.it.ution equivalent provides US with a convenient, met.hod of determining 
whether a t.ransposit.ion is at.ercogenic or not. The substitution equivaient is closely rclat.ed to systematic 
en~lir~erations by unit subduced cycl_e indices. where a derisatise is produced by placing a set of ligands 
on t.he positions of A skeleton.[l”l-!l’) i\ pa’ tr of distinct rcplacen1ent.s in the enumeration corresponds to 
a pair of molecules participating a transposit.ion. Hence, we can determine stereogcnicity by examining 
whether t.he pair of replacemmfs in a substitution equivalent generate two distinct molecules or not. 

Stereogenic transpositions. In accord with the topicities described in the preceding section, there 
are four t.ypes of transpc&ions; homofopic, enantiotopic, diasteretopic, and heterolopic t.ranspositions. As 
shown below, these topicities are concerned with common skeletons, not with molecules to be examined. 

The example illustrat.ed in Figure 2 is a diastereotopic trunsposition. The 3- and F-positions of the 
common skelet.on (1) of G, symmetry belong t.o the respect.ive C&/C,) orbits (AZ and As); that is, they 
are diastereotopic to each other. Hence, this transposition is a diastereotopic transposition. In general, a 
subst.itution equivalent. for a diastereotopic transposition produces two distinct stereoisomers; hence this 
transposit.ion is stereogcnic. 



Substitution Equivalent: 

FF 

Cf@@ iastereotopic 

’ c2v 
common 
skeleton 

FF 
H 

@ 

P 

4 Cl 

Figure 3: Substitution equivalent for a stereogenic transposition 

The term diastereotopic is concerned with the common skeleton (l), not with the molecules (3 

and 4). The &position of 1 is a member of a &(/Cl) orbit, i.e. A2 = {3,11;9,20}; the B-position of 

1 belongs to another &(/CI) orbit, i.e. As = {6.13;15,16}. 



Stcrcogenicity based on orbits 
5949 

A heterotopic transposilion is illustrated by a conversion between 3 and 5 (Fig. 3). The former 
molecule (3) belongs to Cl symmetry and the latter (5) h as C, symmetry. We can also select 1 as 

a common skeleton in this case, where we pay our attention to the 3- and 4-positions. The 3- and 4- 
positions of the common skeleton (1) are conclused to heterotopic, since the 3-position belongs to the 
C&(/C,) orbit (As), while the 4-position is involved in the C,,(/C,) orbit (A,). Obviously, a heterotopic 
transposition is in general stereogenic to produce an isoskeletal isomer. 

Het erotopic transposition: heterotoDic 

3 Cl 5cs 

Enantiotopic transposition: 

Figure 3: Heterotopic and enantiotopic transpositions as stereogenic ones 

The rightmost figures depict a common skeleton appeared in substitution equivalents. The terms, 

heterotopic and enantiotopic, come from the common skeleton. 

The interconversion between 3 and 6 (the enant.iomcr of 3) is an enantiotopic transposition, since 
the positions 3 and 20 of the common skeleton (1) are cnantiotopic to each other. In other words, these 
positions belong to the same C&(/C,) (A,), b u serapat.ely occupy the respective halves of this orbit. t 
Thereby, this process is stereogenic to produce a pair of enantiomers. 

Non-stereogenic transpositions. Figure 4 depict.s homotopic transpositions, all of which are 
non-stereogenic. Homotopic transpositions are subdivided into three categories in accordance with three 
types of homotopicities. 

The molecule (3) is converted into 3~ by interchanging S-OH and 11-H. The latt.er molecule (3) 
is superimposable to the former by a proper rot.ation (a C’? operation). We use the term homomeric to 
den0t.e this type of relation heween two molecules. In the light of this definition, we describe that this 
transposition is non-stereogenic, since it generates a homomer of the starting molecule. If we consider 1 
as a common skeleton in the corresponding substitution quivalent, the 3- and 1 l-positions belong to one 
half of a enantiospheric orbit (A, in Table 1) and are homatopic in the light of the first criterion of the 
above definition. Hence: this transposition is a homotopic transposition. 

The second type of homotopic transposition is exemplified by the conversion between 7 and its 
homomer (7a). In the corresponding common skeleton (l), the 5- and 14-positions are the members of a 
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HO 

7 cs 

w 

3a Cl 

7a Cs 

Figure 4: Homotopic transpositions as non-stereogenic ones 

Note that AZ = {3,13;9,20) is an enantiospheric orbit governed by C,,(/C,) and As = {5,14) is 

a homospheric orbit governed by C2.(/C,) in th e common skeleton (1). In the common skeleton (O), 

A1 = { 1,2} is a hemispheric orbit governed by Cz(/Cl). 
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homospheric orbit (A, governed by C&(/C,)), w ic h h are homotopic to each other by means of the second 
criterion of the definition. Hence, this process is homotopic transposition and non-stereogenic. 

The interconversion between 8 and its homomer (8a) is one of the third-type homotopic transposi- 
tions, becuase the corresponding common skeleton is a C& molecule (9), in which the l- and 2-positions 
construct hemispheric orbit governed by the CR C,(/C,). 

The occupation of one ligand on a homospheric orbit (or of one half of an enantiospheric orbit, or 
of a hemispheric orbit) in the common skeleton of a substitution equivalent can easily proved to produce 
a molecule that is homomeric to a molecule produced by another occupation of the Iigand on the same 
orbit. In general, any homotopic transpositions produce homomers and hence the homotopic transposition 
is non-stereogenic. Because the present discussion is concerned with aIl possible cases, we end up with 
a simple theorem: a homotopic transposition is non-stereogenic; the other types of transpositions are all 

stereogenic. 

homotopic transposition . non-stereogenic 

enantiotopic transposition 
diastereotopic transposition 

I 

. . stereogenic 
heterotopic transposition 

So-called “pseudoasyn-nnetric carbon atoms”. The test using the t.opicity of a common 
skeleton in asubstitution equivalent is aconvenient method of checkingstereogenicity. Two chiral stereoiso- 
mcrs of 2,3,4_trihydroxyglutaric acid, 10 and 11, have been already discussed.[“I From the present point 
of view, t.he two isomers are represented by 12 and 13, in which Q and g denote a pair of antipodal ligands 
(CH(OH)COOH). For a transposition on the central carbon of 12, we consider a common skeleton (14) 
of Cz symmetry (Figure 5), in which the resulting two positions construct a hemispheric orbit governed 
by C,(/C,). This fact indicates that. this transposition is a homotopic transposition, which is concluded 
to be non-stcreogenic. Similarly, a transposition on 13 is aIso homotopic and hence non-stercogenic. 

Let us next discuss the t.wo diastercomers (1G and 17) of ?,3,4-trihydroxyglutaric acid, in which the 
central carbon atom has been dubbed “pseudoasymmetric” (Figure 6). These molecules are formulated 
by means of the present procedure to be 18 and 19, each of which can be considered to belong to C, 
symmetry. For the purpose of discussing a transposition on the central carbon of 18 or 19. we consider 
a common skeleton (20) of C, symmetry. Note that the hypothetical removal of H and OH keeps the C, 
symmetry invariant. The resulting two positions belong seperat.cly to C,(/C,) orbits; that is, they are 
diastereotopic. Hence, this transposition is concluded to be a diastreotopic one, which is stereogcnic to 
result in the interconversion between the diastreomers (18 and 19). 

So-called “chirotopicity w. styrogenicity”. We have already discussed that the concept 

*‘chirotopicil.y” proposed bp Ivlislow et nl. 

orhit.[‘gI W 

can be rcplaccd Ily the chirality Iitt.ingness (spI1ericit.y) of an 

e propwed t.he term ho?~zosphrr~c in place of “achirotopic” and the terms cno,~tlospherlc and 
hemisyherzc in place of “chirotopic”. II. should be emphasizetl that t.hesc two systems of terminology are 
conceptually distinct. That is to say, the present. terms concerning the sphericity (chirality fittingness) are 
t.he att.ributes of an orbit. whereas the terms regarding the chirotopicity are the at.tribulcs of an intlivisual 
ligand.13@ In other words, t.he spl1ericit.y is concerned with a molecule as a whole in the form of such orbits; 
on the ot.her hand, the chirotopicity focuses on a part of the molecule. Although it was emphasiactl that 
chirotopicit.y and st.ereogcnicity are independent attributes, 1”. “1 the staudpoint based on (hc chirotopicity 
is still insufficient to differentiate the att.ributes. 

From the present point of view, t.he so-called chirotopicity is described by the sphcricity of an orbit 
appearing in the skeleton of a molecdc at issue. For example. t.he 3-OH ligand of 3 is a member of a 
C,(/C,) orbit, since this molecule belongs to Cl symmetry (asymmetric). The syml,ol C,(/C,) indicates 
that t.his orbit is hemispheric. In the chirotopicity convention, Cl in the parentheses indicat.es t.hat. this 
Iigand is chirotopic. 

On the other hand, stereogenicity is concerned with an orbit appearing in a conmzon skeleton that 
is considered in a substitution equivalent. For example, the 3- and 11-positions construct one half of the 
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H, $4 OH 

Q 

10 

H0,C.H 

G 

11 

homotopic 
r 

12a 

Cl 

homotopic 

13a 

Cl c2 

Figure 5: Chiral 2,3,4-trihydroxyglutaric acids 

The rightmost figures (14 aud 15) depict common skeletons, where each of the C,(/Cl) orbits is 

hemispheric. 

Q 
TOOH 

Q 

H+H 

HbFdOH 

HO,C+H 

Figure 6: Meso 3,3;1-trill~(lros~6llltaric acids 

The rightmost figure (20) depicts a common skeleton. where each of the C,(/C,) orbits is homo- 

spheric. 
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C,,(/C,) orbit (A,) (i.e. they are homotopic) in the common skeleton 1 for the transposition between 
3-OH and 11-H of 3. Then, we have concluded that this homotopic transposition is non-stereogenic. It 
should again be emphasized that this homotopic relation stems from the sphericity of the common skeleton 
(1) and is not concerned with the molecule to be examined (3). 

4 Conclusion 

A new scheme of determining topicities is proposed in the light of chirahty fittingness of orbits (homo- 
spheric, enantiospheric, and hemispheric). Thus, these concepts create the new definitions of the terms, 
homotopic, enantiotopic, diastereotopic and heterotopic. A new method of checking stereogenicity is pre- 
sented by using a substitution equivalent, the orbits of which are examined in terms of chirality fittingness. 
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